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A General Mapping Technique for Fourier Transform
Computation in Nonlinear Circuit Analysis
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Abstract—A mapping technique that can handle any number are discussed to illustrate the characteristics of this mapping
of fundamental frequencies in multitone nonlinear circuit anal-  technique.
ysis is presented. In this technique, almost-periodic spectrum
truncated using the box scheme is mapped onto an equivalent

periodic spectrum which is dense with no missing harmonic. The . MAPPING TECHNIQUES
Fourier transform (or its inverse) is then implemented by a single i . .
one-dimensional fast Fourier transform. Characteristics of the In mapping techniques, the actual fundamental frequencies

mapping technique are illustrated by some results. Due to its are replaced by artificial fundamental frequencies so that the
good combination of flexibility and speed, this mapping technique original spectrum is mapped onto an equivalent periodic and
should be considered as an alternative to the multidimensional jeonge spectrum. By dense, we mean that at most a few har-
g;;ﬁ;fg&)r’?u”er transform in general-purpose harmonic-balance monics are missing. Signals transformed through the mapping
become periodic and, consequently, can have their Fourier
Index Terms—Almost-periodic signals, Fourier transform com-  coefficients efficiently calculated by the one-dimensional FFT.
putation, harmonic balance, mapping techniques. In addition, as the mapped spectrum is dense, the number of
time-domain samples required (which is determined by the
periodic spectrum) is not much larger than the theoretical
minimum predicted from the original spectrum. The concept of
N harmonic-balance (HB) simulation of nonlinear mimapping techniques discussed here was originally introduced
crowave circuits, a Fourier transform is needed to carfgr diamond truncation with two fundamental frequencies in
out the conversion between time and frequency domains. Fay and later extended to box truncation with the same number
periodic circuits, the traditional discrete Fourier transformsf fundamental frequencies [5].
(DFT) is invariably employed. The DFT is usually imple- Mapping techniques rely on two basic properties. First,
mented by the efficient fast Fourier transform (FFT) algorithnHB can always be formulated to only require computation
In multitone problems, the signals become almost-periodi¢ Fourier coefficients of signals that can be expressed as
[1]. The most important transforms that have been considerg@) = f[z(t)], where f(-) is an algebraic function and
for this situation are the multidimensional discrete Fouri@he Fourier coefficients of:(t) are known. When needed,
transform (MDFT), the almost-periodic Fourier transformgerivatives should be calculated in the frequency domain using
(APFT's), and mapping techniques [2]. In the latter, almosthe original spectrum. The second property is the frequency
periodic spectrum is mapped onto an equivalent periodigdependence of Fourier coefficients when fundamental fre-
spectrum, which can then be handled by the DFT. quencies are incommensurable (i.e., linearly independent over
Although APFT's are more flexible with respect to spectrunthe rationals) [4], [5].
truncation, only the MDFT and mapping techniques can beThe spectrum in a nonlinear circuit is given by
efficiently implemented by the FFT. The MDFT can be directly
formulated for any number of fundamental frequencies [3]. A {

I. INTRODUCTION

d
wlw= Z miA;; my € Z;
=1

However, mapping techniques are presently available only for
two fundamental frequencies [4], [5].

This letter presents a mapping technique suitable for any
number of fundamental frequencies. The original almost-
periodic spectrum truncated using the box scheme [5] is

mapped onto an equivalent dense periodic spectrum Wilhere {),, ---, \;} is the set of fundamental frequencies.
no missing harmonic. The Fourier transform, or its inversghe requirement of they’s being incommensurable can be
is then CompUtEd by a Slngle one-dimensional FFT. Resull@axed after spectrum is truncated to a finite 49t =

first nonzerom; positive} (1)

{wo = 0, w1, -+, wi }. Eachwy € Ag is generated by a
vector of indexean = (my, ---, mq). Neglecting effects of
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When {\, ---, A\q} is replaced by a set of artificial fun- This equation implements the mapping betweégp and> i .
damental frequenciefry, - -, o4}, Ax is mapped ont@ . Since ¢ is arbitrary, it may be set equal to 1 rad/s for
If the artificial fundamental frequencies are also incommenssimplicity.
rable within X, then the mapping is one-to-one and Fourier In some important situations, fundamental frequencies are
coefficients remain independent ¢4, ---, o4} as well. In originated from independent sources having somewhat differ-
addition to being incommensurable withily, {o1, ---, 64} ent power levels. For instance, this occurs in mixers. To reduce
should be selected in mapping techniques such Ihatis effects of aliasing, the best strategy is to label the original
periodic and dense. In case this is possib(e) is transformed base frequencies in increasing order of power levels. Thus,
by the mapping into a periodic signal, time-domain sampleéise higher the power level, the larger the associatgavill
of z(¢) are efficiently computed from its Fourier coefficienthe. An example of the effectiveness of this strategy will be
using the FFT, (frequency independent) Fourier coefficients gifen in the next section.

y(t) = flz(t)] are efficiently computed by the FFT and then The reason for the strategy described above can be under-
mapped fromXx back toAg. stood after an examination of how aliasing is mapped back
In general, the problem of determining artificial fundamentad the original spectrum. The first fundamental frequengy

frequencies having the desired properties is rather compl@x.mapped on the first harmonie of the mapped periodic
Explicit solutions which yield periodic spectra with no missingpectrum. Therefore, harmonics bf not accounted for in (2)
harmonic are presently available only for diamond and b@suse aliasing right in the middle of the original spectrum. On
truncation with two fundamental frequencies. the other hand, harmonics of the last fundamental frequapcy
not in (2) can only corrupt other harmonics &f. In this case,
the aliasing mechanism is similar to that of periodic signals
and higher order harmonics of; are corrupted first. Thus, a
high power signal will introduce less aliasing errors when its

Using box truncation, the truncated frequency Agt be- associated fundamental frequency is labeled last.
comes

I1l. A GENERAL MAPPING TECHNIQUE
COMPATIBLE WITH BOX TRUNCATION

IV. RESULTS

d

Ay = {w lw = Z my; mg € Z; [my| < H, A set of routines was developed in C to implement the map-
=1 ping technique. These routines carry out spectrum truncation
and reordering as well as direct and inverse Fourier transforms.
=1, ---,d; first nonzerom, positive}. (2) Asusual, the FFT takes into account the fact that time-domain
sequences are real [6], [7]. The interface with HB simulators
The integerH; limits the largest harmonic of; which is becomes partlgularly simple if the actual f_requengles are
: L . ordered according to the mapped spectrum in the simulator.
considered. The number of frequencies in (2) different from : . e
) In case a frequency and its corresponding artificial frequency

zero is equal to o . -
have opposite signs, the related Fourier coefficient should be
[( d ) ] complex conjugated when moving between real and mapped

—1].

K=}

3 H(2H1+1) (3) spectra.

=1 To compare the mapping technique with the FFT-based
MDFT, we examined the problem of computing the Fourier

A universal sequence of artificial fundamental frequencies ... ' :
. ; coefficients of the signal
is generated using

g1 =0
4
or=(142H;_1)o11 1=2,3,4,- - @ wherews, we, andws are arbitrary incommensurable frequen-

cies. For simplicity, H;, = Hy, = Hsz = H was adopted
for arbitrary & > 0. For a given number of fundamental, (2). In general, differentH;’s should be employed to
frequenciesd, the firstd frequencies generated by (4) shoulgyptimize the transform. Fourier coefficients were computed by
be used. From (2) and (4), the mapped spectrum results inthe mapping technique witly; mapped to thdirst artificial
fundamental frequency, by the mapping technique with
Yk ={rlv=ho; k=01, K} () mapped to theéast artificial fundamental frequency, and using
ffhe MDFT.
Fig. 1 shows the computed Fourier coefficient at frequency

{ y(t) = 0.01 exp (10 cos wit + cos wat 4+ cos wat)  (7)

with K given in (3).X is, therefore, periodic and dense wit
no missing harmonic. In addition, the firgts,’s determined

from (4) are incommensurable within the correspondihg. “! T 2ws —w28sa function off{. As expected, the mapping
The order of the harmonik in (5) is related tom, - -, my technique is less affected by aliasing whenis mapped to the
in (2) by T last artificial fundamental frequency. In fact, féf > 3 this

strategy performs even better than the MDFT. These results are
also displayed on Table I. The dynamic range of the mapping
. (6) technique is comparable to that of the MDFT, which was

1
k==
7 assessed in [8] for two fundamental frequencies.
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TABLE |
CALCULATED FOURIER COEFFICIENT OF THESIGNAL DEFINED IN (7) AT wi + 2w3 — w2 AS A FUNCTION OF H (SeE
Fic. 1 CaPTION). ALSO LISTED ARE THE OPERATION COUNTS FOR THE MAPPING TECHNIQUE AND FOR THE MDFT

H Fourier Coeff. Fouricr Coeff. Fourier Coeft. Operation Count  Operation Count
Map. Tech.(1) Map. Tech.(2) MDFT Map. Tech. MDFT
2 9.59009 28.0088 4.54475 896 4608
3 5.68817 4.12448 4.54475 4608 4608
4 4.50535 4.09848 4.09849 10240 49152
5 4.17471 4.09928 4.09849 22528 49152
6 4.10914 4.09831 4.09849 49152 49152
7 4.09950 4.09831 4.09849 49152 49152
8 4.09842 4.09831 4.09831 106496 491520
9 4.09832 4.09831 4.09831 106496 491520
10 4.09831 4.09831 4.09831 229376 491520

100
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-4 MAPPING TECHNIQUE(2)
--&- MDFT

FOURIER COEFFICIENT
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Fig. 1. Fourier coefficient of the signal defined in (7) at frequen
w1 + 2wz — we as a function of the truncation paramet®r. The Fourier
coefficient is computed by mapping technique L)r—mapped to first artificial
fundamental frequency; mapping technique 2)—mapped to last artificial
fundamental frequency; and MDFT.
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Fig. 2. Operation counts for the mapping technique and for the MDFT a?7

functions of the truncation parametéf.

The operation count of the mapping technique is propor
tional to Slog, S, where S is the number of time-domain

samples employed in the FFT. For the MDFT, the operation
count is proportional toS;.5253log,(515253), where Sy,

S», and S3 are the numbers of samples in each dimension.
Recall that all these numbers must be powers of two. The
operation counts of the two transforms as functionsHbf
are in Fig. 2 and also on Table I. The mapping technique
always has an operation count less than or equal to that of
the MDFT.

V. CONCLUSION

A mapping technique suitable for the analysis of almost-
periodic circuits with any number of fundamental frequencies
has been presented. This technique is flexible and simple to
implement since it employs a single one-dimensional FFT.

CThe generality of the mapping technique associated with box
i{runcation described in this letter makes this technique a good
alternative for general-purpose HB simulators. Recall that the
MDFT also requires box truncation, but mapping techniques
are faster.
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