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A General Mapping Technique for Fourier Transform
Computation in Nonlinear Circuit Analysis

Paulo Jośe Cunha Rodrigues,Member, IEEE

Abstract—A mapping technique that can handle any number
of fundamental frequencies in multitone nonlinear circuit anal-
ysis is presented. In this technique, almost-periodic spectrum
truncated using the box scheme is mapped onto an equivalent
periodic spectrum which is dense with no missing harmonic. The
Fourier transform (or its inverse) is then implemented by a single
one-dimensional fast Fourier transform. Characteristics of the
mapping technique are illustrated by some results. Due to its
good combination of flexibility and speed, this mapping technique
should be considered as an alternative to the multidimensional
discrete Fourier transform in general-purpose harmonic-balance
simulators.

Index Terms—Almost-periodic signals, Fourier transform com-
putation, harmonic balance, mapping techniques.

I. INTRODUCTION

I N harmonic-balance (HB) simulation of nonlinear mi-
crowave circuits, a Fourier transform is needed to carry

out the conversion between time and frequency domains. For
periodic circuits, the traditional discrete Fourier transform
(DFT) is invariably employed. The DFT is usually imple-
mented by the efficient fast Fourier transform (FFT) algorithm.
In multitone problems, the signals become almost-periodic
[1]. The most important transforms that have been considered
for this situation are the multidimensional discrete Fourier
transform (MDFT), the almost-periodic Fourier transforms
(APFT’s), and mapping techniques [2]. In the latter, almost-
periodic spectrum is mapped onto an equivalent periodic
spectrum, which can then be handled by the DFT.

Although APFT’s are more flexible with respect to spectrum
truncation, only the MDFT and mapping techniques can be
efficiently implemented by the FFT. The MDFT can be directly
formulated for any number of fundamental frequencies [3].
However, mapping techniques are presently available only for
two fundamental frequencies [4], [5].

This letter presents a mapping technique suitable for any
number of fundamental frequencies. The original almost-
periodic spectrum truncated using the box scheme [5] is
mapped onto an equivalent dense periodic spectrum with
no missing harmonic. The Fourier transform, or its inverse,
is then computed by a single one-dimensional FFT. Results
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are discussed to illustrate the characteristics of this mapping
technique.

II. M APPING TECHNIQUES

In mapping techniques, the actual fundamental frequencies
are replaced by artificial fundamental frequencies so that the
original spectrum is mapped onto an equivalent periodic and
dense spectrum. By dense, we mean that at most a few har-
monics are missing. Signals transformed through the mapping
become periodic and, consequently, can have their Fourier
coefficients efficiently calculated by the one-dimensional FFT.
In addition, as the mapped spectrum is dense, the number of
time-domain samples required (which is determined by the
periodic spectrum) is not much larger than the theoretical
minimum predicted from the original spectrum. The concept of
mapping techniques discussed here was originally introduced
for diamond truncation with two fundamental frequencies in
[4] and later extended to box truncation with the same number
of fundamental frequencies [5].

Mapping techniques rely on two basic properties. First,
HB can always be formulated to only require computation
of Fourier coefficients of signals that can be expressed as

, where is an algebraic function and
the Fourier coefficients of are known. When needed,
derivatives should be calculated in the frequency domain using
the original spectrum. The second property is the frequency
independence of Fourier coefficients when fundamental fre-
quencies are incommensurable (i.e., linearly independent over
the rationals) [4], [5].

The spectrum in a nonlinear circuit is given by

first nonzero positive (1)

where is the set of fundamental frequencies.
The requirement of the ’s being incommensurable can be
relaxed after spectrum is truncated to a finite set

. Each is generated by a
vector of indexes . Neglecting effects of
aliasing, a Fourier coefficient will depend on actual values in

only if two or more different vectors of indexes
yield the same . Thus, fundamental frequencies need be
incommensurable only within .
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When is replaced by a set of artificial fun-
damental frequencies is mapped onto .
If the artificial fundamental frequencies are also incommensu-
rable within , then the mapping is one-to-one and Fourier
coefficients remain independent of as well. In
addition to being incommensurable within
should be selected in mapping techniques such that is
periodic and dense. In case this is possible, is transformed
by the mapping into a periodic signal, time-domain samples
of are efficiently computed from its Fourier coefficients
using the FFT, (frequency independent) Fourier coefficients of

are efficiently computed by the FFT and then
mapped from back to .

In general, the problem of determining artificial fundamental
frequencies having the desired properties is rather complex.
Explicit solutions which yield periodic spectra with no missing
harmonic are presently available only for diamond and box
truncation with two fundamental frequencies.

III. A G ENERAL MAPPING TECHNIQUE

COMPATIBLE WITH BOX TRUNCATION

Using box truncation, the truncated frequency set be-
comes

first nonzero positive (2)

The integer limits the largest harmonic of which is
considered. The number of frequencies in (2) different from
zero is equal to

(3)

A universal sequence of artificial fundamental frequencies
is generated using

(4)

for arbitrary . For a given number of fundamental
frequencies , the first frequencies generated by (4) should
be used. From (2) and (4), the mapped spectrum results in

(5)

with given in (3). is, therefore, periodic and dense with
no missing harmonic. In addition, the first ’s determined
from (4) are incommensurable within the corresponding.
The order of the harmonic in (5) is related to
in (2) by

(6)

This equation implements the mapping between and .
Since is arbitrary, it may be set equal to 1 rad/s for
simplicity.

In some important situations, fundamental frequencies are
originated from independent sources having somewhat differ-
ent power levels. For instance, this occurs in mixers. To reduce
effects of aliasing, the best strategy is to label the original
base frequencies in increasing order of power levels. Thus,
the higher the power level, the larger the associatedwill
be. An example of the effectiveness of this strategy will be
given in the next section.

The reason for the strategy described above can be under-
stood after an examination of how aliasing is mapped back
to the original spectrum. The first fundamental frequency
is mapped on the first harmonic of the mapped periodic
spectrum. Therefore, harmonics of not accounted for in (2)
cause aliasing right in the middle of the original spectrum. On
the other hand, harmonics of the last fundamental frequency
not in (2) can only corrupt other harmonics of. In this case,
the aliasing mechanism is similar to that of periodic signals
and higher order harmonics of are corrupted first. Thus, a
high power signal will introduce less aliasing errors when its
associated fundamental frequency is labeled last.

IV. RESULTS

A set of routines was developed in C to implement the map-
ping technique. These routines carry out spectrum truncation
and reordering as well as direct and inverse Fourier transforms.
As usual, the FFT takes into account the fact that time-domain
sequences are real [6], [7]. The interface with HB simulators
becomes particularly simple if the actual frequencies are
ordered according to the mapped spectrum in the simulator.
In case a frequency and its corresponding artificial frequency
have opposite signs, the related Fourier coefficient should be
complex conjugated when moving between real and mapped
spectra.

To compare the mapping technique with the FFT-based
MDFT, we examined the problem of computing the Fourier
coefficients of the signal

(7)

where , , and are arbitrary incommensurable frequen-
cies. For simplicity, was adopted
in (2). In general, different ’s should be employed to
optimize the transform. Fourier coefficients were computed by
the mapping technique with mapped to thefirst artificial
fundamental frequency, by the mapping technique with
mapped to thelast artificial fundamental frequency, and using
the MDFT.

Fig. 1 shows the computed Fourier coefficient at frequency
as a function of . As expected, the mapping

technique is less affected by aliasing whenis mapped to the
last artificial fundamental frequency. In fact, for this
strategy performs even better than the MDFT. These results are
also displayed on Table I. The dynamic range of the mapping
technique is comparable to that of the MDFT, which was
assessed in [8] for two fundamental frequencies.
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TABLE I
CALCULATED FOURIER COEFFICIENT OF THESIGNAL DEFINED IN (7) AT !1 + 2!3 � !2 AS A FUNCTION OF H (SEE

FIG. 1 CAPTION). ALSO LISTED ARE THE OPERATION COUNTS FOR THEMAPPING TECHNIQUE AND FOR THE MDFT

Fig. 1. Fourier coefficient of the signal defined in (7) at frequency
!1 + 2!3 � !2 as a function of the truncation parameterH. The Fourier
coefficient is computed by mapping technique 1)—!1 mapped to first artificial
fundamental frequency; mapping technique 2)—!1 mapped to last artificial
fundamental frequency; and MDFT.

Fig. 2. Operation counts for the mapping technique and for the MDFT as
functions of the truncation parameterH.

The operation count of the mapping technique is propor-
tional to , where is the number of time-domain

samples employed in the FFT. For the MDFT, the operation
count is proportional to , where ,

, and are the numbers of samples in each dimension.
Recall that all these numbers must be powers of two. The
operation counts of the two transforms as functions of
are in Fig. 2 and also on Table I. The mapping technique
always has an operation count less than or equal to that of
the MDFT.

V. CONCLUSION

A mapping technique suitable for the analysis of almost-
periodic circuits with any number of fundamental frequencies
has been presented. This technique is flexible and simple to
implement since it employs a single one-dimensional FFT.
The generality of the mapping technique associated with box
truncation described in this letter makes this technique a good
alternative for general-purpose HB simulators. Recall that the
MDFT also requires box truncation, but mapping techniques
are faster.
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